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Optical fibers have found important applications in chemical imaging and single-
particle detection. The applications make use of the propagating evanescent energy
existing outside the core of afiber. In this paper, avariational method is described to
solve two-dimensional Helmholtz eigenval ue problemsfor a core of arbitrary shape.
Themethod enablesthe problem in theinfinitedomain to bereduced to abounded one
by using atransparent boundary condition. Itisshownthat the variational formulation
does not produce spurious solutions. An optimal error estimate is obtained for the
associated finite element method. Finally, numerical experimentsindicatethat square
fibersyield sufficient evanescent energy for imaging application.  © 2000 Academic Press
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1. INTRODUCTION

Optical fibers have been extensively used in telecommunications. Their high data-trans-
mission rate is one of their most attractive features. This application mainly relies on the
electromagnetic fiel ds propagating inside the diel ectric core of thefiber. The energy of these
fields is concentrated in the core. The small portion of this energy existing just outside of
the core surface, the so-called propagating evanescent energy, has recently found useful
applications in single-particle detection and chemical imaging [4]. However, most of the
research results available in the literature are for fibers with circular cores and are only
concerned with the core-energy. For imaging purpose, evanescent energy is used and fibers
with flat core surfaces, such as square fibers, are more convenient. This paper is devoted to
the study of the propagating evanescent energy in non-circular fibers.

An optical fiber is oriented in R® so that its longitudinal axis is parallel to the z-axis.
Its geometry and materials are assumed to be independent of z. Thus, Maxwell’s equations
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can be reduced to two-dimensional Helmholtz eigenvalue equations defined in the infinite
domain R?. For somefiberswith circul ar corecrosssection, analytical solutionsarepossible,
for example, step-index fibers and truncated parabolic fibers [14]. In general, one has to
solve Helmholtz equations numerically. The standard finite element method of truncating
the unbounded domain is often employed, by assuming that the fields vanish outside of a
large but finite domain which consists of the core of the fiber. This truncation method not
only is inaccurate but also yields spurious (non-physical) solutions [13]. In this paper, a
finite element method i s devel oped to reduce the computational effortsto abounded domain
and to eliminate spurious solutions by introducing a transparent boundary condition. This
condition incorporates the exact solutions in the unbounded homogeneous region and the
finite element sol ution in the bounded region containing the core of the fiber. Thismethod is
often used in scattering problems and exterior interface problems (see, for example, [7, 11]
and references therein).

The paper isorganized asfollows. In Section 2, the two-dimensional Helmholtz equation
governing the propagating transverse magnetic (TM) field is presented. In Section 3, an
artificial boundary is introduced, which divides the original problem into two parts. One
part isdefined in abounded region, the so-called interior problem, and the other isdefined in
the unbounded region, the so-call ed exterior problem. These sub-problemsare coupled by an
appropriate transparent boundary condition constructed on the artificial boundary using the
field continuity conditions. In Section 4, thetransparent boundary conditionisused toreduce
the eigenvalue problem defined in the infinite domain to an eigenvalue problem defined in
a bounded domain, i.e., the interior problem. In Section 5, a variational formulation of
the interior problem is given, which is the basis for the finite element method. Optimal
convergence results for the finite element approximation are established. In Section 6,
computational aspects of the method is discussed. Numerical experiments are presented to
show the accuracy of the finite element approximation and comparisons of the evanescent
energies in the square fibers and circular fibers are made. It is seen that square fibers can
produce a significant amount of evanescent energy together with their flat core surface
that can be very useful and convenient in molecule detection and imaging. The paper is
concluded in Section 7.

2. HELMHOLTZ EQUATION FOR THE ELECTRIC FIELD

Let © c R? bethe coreregion of thefiber and let ¢ = R?\ 2 be the cladding region. The
refractive index distribution of the fiber is characterized by the function

ni(x,y) inQ
nx.y) = {nz in Q°,
where ny (X, y) isacontinuous function and n, > 0 isaconstant. One can easily generalize
the results of the paper to piecewise continuous functions n;. For wave guidance taking
placein thefiber, it is assumed that ny < maXx yeq N1(X, Y) = Neo throughout the paper.
Let E be the time-harmonic electric field (time dependence €!). We wish to solve the
time-harmonic Maxwell’s equation for the electric field E(x, y) € L2(R?)

V xV x E=k?n2E inR?,

limr|VxE—ikE| =0, r=+/x2+y2

r—oo

@
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wherek = 277 /A isthewave number and X isthe wavelength. The tangential components of
the solution E and of V x E are also required to be continuous at the interface of different
materials.

DEFINITION 2.1. A guided mode E is a particular solution to (1) such that E e L?(R?)
and is of theform

E = Ee %2 = (E,, Ey, E,)e7#?, 2

where 8 is the propagation constant.

There are two fundamental cases of polarization, namely the transverse magnetic (TM)
and the transverse electric (TE) polarization. Inthe TM case, the electric field E is parallel
tothe z axis (E = (0, 0, E;)). In the TE case, the magnetic field H is parallel to the z axis
(H = (0, 0, Hy)). Inthis paper, only TM polarization is considered. For the TE polarization,
similar arguments and results can be used and obtained. For convenience, we denoteu = E,.
Substituting (2) with E, = Ey =0 in (1), we obtain the Helmholtz eigenvalue equation
defined in R?:

Givenk, find all pairs (8, u) € (knz, kne) x L%(R?) such that

Au+ (k’n? — B2u=0 ing,
5 Au+ (k?nZ — g2)u=0 in Q¢ =R%\Q,
® U(Xp)~ =Uu(Xo) " for xo € 0%,

N(Xo) 2 (x0)~ =N 28 (xg)t  forxo€9Q,

limy oo r 2|24 —iku| =0, (radiation condition).

The condition on the possible values of the propagation constants 8’s for guided modesis
well-known (see for example[2]). Here, 9/9n denotes the differentiation of fi, the outward
normal to 92 and, for Xg € 92,

u(xo)~ = lim u(x),

X—Xo

XeQ

lim u(x).
X—Xo

xeQe

uXo)*

We define du(xo)~/dn in asimilar fashion. The infinite nature of Problem (P) is the main
difficulty in the computational viewpoint. By introducing atransparent boundary condition,
one can reduce (P) to an eigenval ue problem over abounded region of R?. Inthe next section,
we construct the transparent boundary operator.

3. TRANSPARENT BOUNDARY CONDITION

Let Br be a disc of radius R > 0 containing the core of the fiber  and let I'r be the
boundary of Br (see Fig. 1). Denote u; = u|g, and Us = ulgg. We consider the auxiliary
boundary value problem in the exterior region Bg:
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Bp

FIG.1. Computational domain Bg and artificial boundary I'g.

Letge HY?(T'r) and (B2 —k2n3) > O; find ue such that
Aue— (B% — k?n3)ue =0 in B,
(Pe)
Ue == g on FR,
||mr*>oo I'l/zl% - |kUQ‘ = 0
It iswell known in potential theory that the auxiliary problem (Pe) has a unique solution
Ue € H2(BY) [8]. Hence, we can define the mapping

Tr: Hl/z(FR) — Hil/z(FR)
ou
TrIgl(X0) = 8—;%), Xo € I'r.

In fact, we can express T explicitly asfollows. First, in polar coordinates, (Pg) iswritten as

92ue  19ue 1 3%ue
arz r or r2 992

— (BP—Kndue=0  inB§,
Uelrg = 9(0) onTg,

lim r1/2 =0.

r—-oo

dUe .
— —iku
ar €

Using the Fourier series representation of ue, i.e.,

oo

Ue(r, 0) =Y _ud™ ()™,

m=0
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we obtain the modified Bessel equations, form=1, 2, ...,

d2u(™  1du™ [m? )
= — = —k2nd) [u™ =0, r > R
dr2 rodr 2t (8 2) |ue -

Hence, forr > R,
ui™(r) = AnKm(ar) + Bnlm(ar), m=0,1,2...,

where o = /2 — k2n3, Ay, and B, are constants, and K, and |, are modified Bessel
functions of the second kind [1]. However, only Ky (ar) isan L2(BS)-function. Thus,

Ue(T.0) = > AnKm(ar)€™ e (R, 00),0 [0, 2r).

m=0

On the boundary I'r, we also express the boundary function g(0) in Fourier series, i.e.,
9©) =) gme™.
m=0

Then, the condition ug =g on I'r yields
AnKm@R) =g™, m=0,1,2...,

or

g(m)

A = R @R)”

Therefore, the solution ug is of the form

[
g(m)

Ue(r, 0) =
= Km(@R)

Km(@n)e€™, re(R,00),6 €0, 27),

and its normal derivativeis

Que| - _ 2| _ 55 Knl@R) i g
nfr, O, 2= Rn@R) '

Now, we can explicitly define the mapping Tr as
DEFINITION 3.1.  For each g € HY?(I'R), Tr: HY?(I'r) - H~Y2(T'R) is defined by

o0

TrRlg)©) =

m=0

= TR'lge™,
m=0

o Krfn(a R) (m)eime
Km@R)

wherea = /g2 — k2nZ2 and T\ [g] = a(K/, (@R)/Km(aR)g™.
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LEMMA 3.1. Tr:HY2(I'r) > H~V2(I'R) is continuous.

Proof. Let y € HY2(I'g); then

(TRlg]. ¥) = j{_ Telg] - ¥ dr's

/ <ZT(m)[¢]e|m9 Z‘/f(m)e_lm0>Rd9
0

m=0

=27R Z T [gly ™

m=0

. K. (@R) -
— 27R m (M) oy, (M)
" mXZ%Ole(aR)(p v

By the definition of dual norm, we have

ITrlOllH-v2re = sup [(Trlg] ¥)I

11720y =1

< sup ZnRZ

||1//||H1/2(FR)—1

m(a R)
Km(@R)

A

¢(m)‘ |1//(m)"

Since K/, (¢ R) <0 and k(e R) > 0, we can write

Kn@R) _ —K/ (@R)
Km(aR) B Km(“R).

Using the following identity in [1]
ZK{(2) = —mKm(2) — zZKm-1(2),
we get

—K/ (@R) m Km-1(¢R)
—om ™Y 0 mAWTY
Km(@R) ozR+ Km(@R) _otR+

Thus, since 0 < o < ky/nZ, — n3, for sufficiently large n, we have
o (ﬂ + 1) <C(1+m?»Y?,
aR

where C > 0 isindependent of «. Thus, for m>> 1, we obtain

ad Kr/n(()lR) . (m)2 C = 1 2\1/2 (m)2
mzzoa‘Km(aR) 67 = C3 s mr o

Hence, by the Cauchy—Schwartz inequality, we obtain

e Kl (aR)
mz_oa‘m ™[] < Clllisan-

So Trisboundedin HY2(I'r) asdesired. m
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4. INTERIOR PROBLEM
With the mapping Tr we can reduce the problem (P) to

Find (B2, u) € (k?n, k?nZ)) x H1(Bg)\{0} such that
Aui + (K — AU =0  inQ,

Aui+ (k?n3 — p2)u; =0  inBR\Q,

Ui(Xg)™ = Uj(Xo)™ forxpe 02

N(Xo) 52 (Xo) ™ = N % (xo) ™ for xp € 92,

8u.

|r R[ui‘rR} onI'g.

We next show that the new problem (P,) is equivalent to the original problem (P).
LEEMA 4.1. The pair (82 u) e (k?n2, k?n2)) x H1(R?)\{0} is a solution of (P) iff
(B2, up) e (k2n2, k2n2)) x H1(£2)\{0} isa solution of the interior problem (P,).

Proof. Suppose (2, u) isasolutionof (P). Denoteu; = u|g, and Ue = Ulge. Thenu; #0;
otherwise, by the continuity conditions, ue = u; and < a“e = ‘]“' onI'r, wewould get Ue|r, =0
and ””e <|ry = 0. Thiswould imply that ue=0, sou= O By thedefmltlon of Tr, we seethat

Tr [ui|rR] =Tr [UG|FR]
dUe
e,
Jau;
an

I'r

Thus, u|g, also satisfies the boundary condition in (P;). Consequently, let (82, u;) be a
solution of (P).
Conversely, let ue be the unique solution of the exterior problem with the boundary
condition Ue|r, = Uj|rg. Hence, we see that
dau;
on |,

JUe

_TR[U'|F ] ZTR[U‘3|FR] = - :

Thus, Ue|r, = Ui|r, and 3”e|rR 84, are satisfied. The function u whose restrictions on

Br and BE areu; and u¢isasol ut|on of (P). Theuniguenessof u followsfrom the uniqueness
of ue and the unique continuation theorem for A operator [9]. =

The reduced problem (P;) can be solved by variational methods.

5. VARIATIONAL FORMULATION OF THE INTERIOR PROBLEM

Let H = L?(BR) with the usual inner product. We define the space
V = {veHYBR) : v(X)~ = v(Xo)*, X0 € 3R} C H
with norm
lvllls = lvllses + vl g

We also define [[[vfllo= llvllo,s + Ilvllo.sg Clearly, V isaHilbert space with norm |||-[||1.
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Let n, be an arbitrary constant such that n, > ng,. We define the bilinear form b(-, -) in
V xV as

b(u,u):/ Vu.vidxdy~|—kz/ (ni—nz)uﬁdxdy—]{ TR[u|FR]17dS
Br B, I'r

R

=/ Vu-Vszxdy-|-k2/ (nZ — n?)uvdxdy
Br

Br

R
2R S

Note that we have introduced the term k2n2 (u, v) into the variational form.

THEOREM 5.1. For each f e L?(B,), there is a unique solution ueV to the non-
homogeneous variational equation

b(u,v) =(f,v) YveV. (©)]
Proof. The existence and uniqueness of the solution u € V isthe standard consequence

of the Lax—Milgram lemma. In fact, we show that the bilinear form b(., -) is bounded and
coercivein V x V. Since the linear map Ty is bounded in H=Y2(I'), we have

||TR(U|I‘R) H H-Y2(T'r) < Cllullnyzrg)-

Hence, by Schwartz's inequality, we have

< Cllullhvzrp IV Hv2(rR)

‘ f TR(U‘FR)JdFR
I'r

= Clliulllzlitol-
Thelast inequality follows from the trace theorem. Thus, we have

2(n2 2
Ib(u, v)| < I Vullo,g:lIVullogx +K*(ng — n3) lIullo.gxlIvllo.es + Clilvlllallvily
= Clijulizlitolllz.

Hence, b(u, v) isbounded in V x V. To show that b(-, -) > 0, we notice that — Ka Ezg >0;
we get

b(u, u) > [Vull3 g, +k*(nZ — n?)[lulld g, > ClIvlIZ.

Thus, b(-, -) > 0 for non-zero u € V. This completes the proof. =

By arepresentation theorem for bounded symmetric bilinear forms, there exists aunique
bounded self-adjoint operator B defined on D(B) C V such that

b(u,v) = (Bu,v) Vu,vevV,

and B hasthe sameboundsasb(., -). Since Oisapoint intheresolvent set of B, theresolvent
T=B"liswel defined, i.e., T isbounded.
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LEMMA 5.1. T iscompactin H.

Proof. Since H(Q) is compactly embedded in H = L2(2), T is bounded and V is
closedin H,

T:H—>DB)cVcHYQ)—H
iscompact. m
Thisimplies that
THEOREM 5.2 [10]. Thespectrumof B consists entirely isolated eigenvalues with finite
multiplicitiesand R, (B) = (B — ¢ 1)~ is compact for every ¢ in the resolvent set of B.
5.1. Finite Element Approximation

Let {Vy:he (0, 1)} be afamily of finite dimensional subspaces of V, which satisfy the
approximation property

Approximation property. There exist aninteger s > 2 and positive constants Cy and C
such that for any v € V with |||v|||| < oo, | <, there exists afunction ¢ € Vj, such that

llv —ollj < Cjh' = Ivlls, j=0,1

For simplicity, we choose the approximation spaces {V},} as sets of continuous piecewise
linear functionsin Bg. Consider the non-homogeneous problem associated with (P)

Let f e H'"2(R?), 1 > 2; find u such that

Au+ (Kn?2—Hu="flg inQ,

Au+ (kng — p2)u= flge InQC,

U(Xg)~ = u(Xg)™" for xg € 092,
au

N(Xo) 22 (Xo) ™ = M228 (o)™ for xp €99,

(NP)

limy oo r/2|39 —iku| = 0, (radiation condition).

The regularity results for the solution of the non-homogeneous problem (NP) imply that
ulg € H'(Q) and ulpq o € H'(BR\Q). Hence, in particular, if f € L2(R?), the family of
continuous linear functions {Vi,} satisfies the approximation property for s=2[3].
In analyzing error estimates, we also consider the discrete non-homogeneous problem
let f € H; findup € V,, such that
b(un, vh) = (f, vn) Vun € V.
Let (B, D(By)) bethe unique self-adjoint operator associatedto b(-, ) : Vi, x Vi, — C. Let

Th= B,;l. Then Ty, iscompact; in fact, Ty, is of finite rank. Then a unique solution uy, to the
non-homogeneous problem is of the form

up =T f, feH.
THEOREM 5.3.  Let u be a unique solution of the variational problem

b(u,v) = (f,v), veV. 4
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Then there exists hg > 0 such that the solution up, 0 < h < hg, of
b(un, vn) = (f, vh), vn €V,
satisfies
lu = vnlllo < Cohlllu — wnlllz, llu— unlllx < Csh.

Proof. Let f € H. Letu bethesolution of b(u, v) = (f, v), ve V. By Céaslemma|3]
and the approximation property of Vj,, we have

b(u — up, u — Gp)¥? < Cy inf b(u — vy, U — vy)Y?
UhEVh
< Cy inf [llu—wvnllx
UhGVh
< Cih. (5)
But we also have the coercivity of the bilinear form b(., -)
b(u — up, u— U2 > Cyllu — up|llz; ©®
thus by combining (4) and (6), we obtain
llu = unflls < Csh.
This shows the second inequality in the theorem. To show the first inequality, we apply
Nitsche's technique [6] as follows. Let g€ H, ||gllo =1. Let wg € V be the unique (dual)
solution of
b(v, wg) =(g,v), veV.
Let ¢ be an arbitrary element of V;,; then
imi/ b(wg — wn, wg — wp)Y? < Cob(wg — ¢, wg — )2
WhHE Vh

=< Colllwg — ¢lll1.

Therefore, ||lwg — whlll1 < Coh by the approximation property of Vi. Thus, by the Aubin—
Nitsche Lemma [ 3], we get

lu—unllo = Colllu — Uh|||l< sup inf |llwg — wh|||1>

gl 20,=1¥nEVh

< Cohlllu — up|llz.

This provesthefirst inequality. =

CoROLLARY 5.1. For h > 0 sufficiently small, we have

ITh =TI < Ch.
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Remark. This corollary implies that the compact discrete operators Ty, converges in
norm to the compact operator T . Hence, the (discrete) spectrum of Ty, also convergesto the
(discrete) spectrum of T [10]. Asaresult, no spurious eigenvalues exist.

Now we consider the variational form of eigenvalue problem,

find (1, u) € (0,k?n% —k®ng) x V such that
b(u,v) =A(u,v) YveV,

where 1 =k?n2 — 2. By Theorem 5.2 the eigenvalues A are isolated since if w is an
eigenvalueof T then i = % Thisisimportant for numerical computations. The associated
discrete eigenvalue problem is

find (An, Un) € (O, k? g — kznd) x Vh, such that

b(uh, vn) = An(Unh, vn) Yon € Vh.

We now state the standard theorem in finite element theory on the convergence rate of the
eigenvalues and eigenvectors for the operator B with compact resolvent T.

THEOREM 5.4. [5] Let Ao be anisolated eigenvalue of B with a normalized eigenvector
Uo. Then there exists an eigenvalue Ay, of By, with a normalized eigenvector uy, such that

|ih — Aol < Ch?
and

lun — ugllo <Ch.

6. COMPUTATION

In this section, we discuss the implementation of the presented finite element method and
illustrate the accurary of the numerical results. For each given k, we consider the eigenvalue
problem

b(u,v) = A(u,v), YveV (7

where A =k?nZ — 82, n, > maxg, n(x, y) and

b(u, v):/Vqudxdy~|—/kz(ng—nz)uvdxdy— Truvdl'g
Q Q

I'r
with
. K.L(@R) 4
TRU = MMM o = /B2 —k2n3.
R n;)a Km(@R) o B 2

For computation, we rewrite the series expansion of the boundary operator Tr as

= KL@R) , m m .
TrU = Za Ko@R) (uf™ (R) cos(mé) + ug™ (R) Sin(md)),
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where u{™ (r) and uy™ (r) are the Fourier coefficients of u defined as

2
u2(r) = n/ u(r, 6) de,
0

1 2

u(lm)(r)z—/ u(r, 8) cos(mg) dg, form>1,
T Jo

uy’(r) =0,

1 2
uy”(r) = ;/0 u(r, ) sin(mg) do, form> 1.

6.1. Discretized Non-linear Eigenvalue Problem

We define a triangulation 7 in the bounded computational domain Bg such that the
corresponding partition P of thecircleI'g isequally spaced. Let Vi, bethefinitedimensional
subspace of V consisting of continuous piecewise linear functionsin Bg,

Vh={vneV vl € P(r), 7 €T, vl, € PX(y), ¥ €P}.

V;, satisfies the approximation property [3]. In each triangle T € 7, we denote the nodal
basis functions as Nj (x, y), j =1, 2, 3. Hence, the approximate solution u, € Vi, can be
expressed as

3
Un(X, y) =Y D UINF(X,Y) ®

€7 j=1
where U; is the value of up at the jth vertex of the triangle 7. Substituting (8) into the
variational problem (7), we obtain the non-linear eigenvalue equation

[A—M(B)IU =A(B)BU, A(B) =kn] — B2, ©)
where
A=) (A=) (A, i.j=123
B=) [B]=) (B i.j=123
M@B) =D M (B =D (MBI, k=12
Y Y
with

(A")j =/[VNf-VN;+k2(n§—n2)NfN;] dx dy,
(BY)jj =/NfNj‘ dxdy, NT(x,y), N (x,y) e P),

2w
(M(B) =/o To[N7 N7 do.

- Ka@R) £y () m m
=2 [ (NI + (N (NS

N ©), N7 (6) € PX(y).
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The terms (N}){™ and (N;)3™ are the cosine and sine Fourier coefficients, respectively,
of the linear function N} (9). To compute the discrete eigenval ues and their corresponding
eigenvectors of the non-linear eigenvalue problem, we view it as a fixed-point problem

AM(B) — (K’nZ — p?) =0, kng<p <kng
which can be solved numerically by the secant method. During the secant algorithm, one
needs to solve the generalized (linear) eigenvalue problem
given 8, find A andU in
[A—M(B)]JU = ABU,

where B is symmetric and positive definite. In this paper, we employ the approach givenin
([12, p. 455]),

6.2. Evanescent Energy

For each eigenvalue 8, the energy of the corresponding propagating mode u is computed
as follows. Asbefore, let u. be the restriction of u to the exterior domain B§ and let u; be
the restriction of u to the interior domain Br. We define the energy of u as

E(w = llullla

=/ <|ui|2+|Vui|2>dxdy+/ (Uel? + [VUel?) dx dy

[u;i| dxdy+/ [Ug| dxdy+/ |Vu|?dx dy.

Br
The percentage of the evanescent energy existing outside the core Q is

EUla)
Ee=1— . 10
: = (10)
We now briefly discuss the computation of &.. First, £(ulg) and ||u; ||L2<B , can be easily
computed by a 2D numerical quadrature on the triangular mesh. To compute ||ue||2§{ we

recall that u, satisfies

Ue(r.0) = > Km(( R)) [u? cos(md) + uy sin(m)],

m=0

whereu?’ and u{"y are the cosine and sine coefficients of the Fourier series representation

of uj(R, 9), respectlvely. Using the identity [14]

2
/ K2(az)zdz = %[K%(az) — Kmt1(@2)Km_1(a2)]

we have

21
/|ue| dxdy = //|ue(r 0)|°r dr do

(aR) Z( U +U3") Ky @R K 1 @R K2 @R)]. (11)
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Finally, we note that the solution pair (8, u) satisfies the variational equation

/ |Vu|2dxdy=/ (k?n? — B?)|uj?>dx dy
R2 R2

(k2n? — g?)|ui 2 dx dy + (k*n3 — / ug| dx dy.

Br

The last term in the above eguation can be computed using (11).

6.3. An Example

We now present an example to study the accuracy of the method. Consider a step-index
circular fiber with core radius a=1, core refractive index n2, =2, and cladding index
n% =1.LetI'r beacircle of radius R= 2. For the circular case, there exist exact analytical
solutions. In fact, (P) can be expressed in polar coordinates as

92E 19E 1 9%E 212 2
{arzz—{-F o r_28622+(k N — A8 )EZ:O r=a,

52
PE 4 108 4 185 4 (Kn3— B2)E, =0 r>a.

By separation of variables, E, can be written as

E;=)  Fn(n)om@®)e

where each Fi,(r) is asolution of

d’Fn  1dFn m?
- m,=-Mm kn? - — | = R 12
arz Tt ar +< ) 0. rek. (12)

and ®(9) isasolution of

d2d,,

ozt m’® =0, 6 €[0,27).

Equation (12) isaform of Bessel’s equations. Thus, its solutions are of the form

F) = {Ame(Ur/a) forr <a, (13)

BnKm(Wr/a) forr > a,
where J, and K, are Bessel functions and modified Bessal functions, respectively, and

U =ay\/k2nZ — 2, W = ay/p2—k2n3.

We normalize solutions (13) at the core-cladding interface as Jn(Ur/a)/Jn(U) and
Km(Wr /a)/Kn(W). Applying the continuity condition of the normal derivatives at the
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TABLE 1
Convergence of the FEM Eigenvalue for k? =3.76263

N vertices h Bn (FEM eigenvalue)®  |Bn/» — Bnl (convergence error)
49 7789 2.19906
169 4203 2.24219 2.24219 — 2.19906 = .0431
625 .2219 2.25213 2.25213 — 2.24219 = .0099
2401 1137 2.25430 2.25430 — 2.25213 = .0022

Note. The fiber is a step-index circular fiber with

2
2 —
n(X,y)—{l

The artificial boundary 'k isthe circle of radius 2.
a Computed by (10).

interface to the normalized field, we get the “exact” eigenvalue equations for a step-index
fiber

) KW

v InU) " Km(W)

m=0,12,.... (14)

Therefore, we can study the accuracy of the finite element method by comparing its eigen-
values to the “exact” ones found by (14). Let k? = 3.76263 and k? = 4.32158. The corre-
sponding exact eigenvalues are g =2.2920 (m=0) and 8 = 2.4956 (m = 0), respectively.
The eigenvalues 8 computed by the finite element method (9) for different mesh size h (the
longest edge of the triangular elements) are listed in Table 1 and Table 2. One sees that
the convergence is of order 4 for g and hence of order 2 for A = 82 as predicted by the
theory.

Finally, we consider a step-index sguare fiber which has the same cross section area
as that of the step-index circular fiber considered in the above example. We also assume
that the core index of the square fiber is the same as that of the circular fiber, that is,
nZ, = 2. We wish to compare their evanescent energy. Thus, the considering square fiber

TABLE 2
Convergence of the FEM Eigenvalue for k? =4.32158

N vertices h Bn (FEM eigenvalue)*  |Bn2 — Bnl (convergence error)
49 7789 2.41035
169 4203 2.45582 2.45582 — 2.41035=.0455
625 .2219 2.46642 2.46642 — 2.45582 = .0106
2401 1137 2.46883 2.46883 — 2.46642 = .0024

Note. Thefiber is a step-index circular fiber with

2
2 -
n“(x,y) = {1

The artificial boundary 'k isthe circle of radius 2.
@ Computed by (10).
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TABLE 3
Comparison of the Percentage of Evanescent Energy £3
in the Circular and Square Fibersfor different k?

k? & of circular fiber® &, of square fiber®
3.762625 25% 37%
4.321575 23% 35%
4.883703 21% 33%
5.783529 20% 32%
6.526149 19% 31%

@ Computed by (11).

® The fibers have the same core area and

2(x.y) 2 inQ (circular or square core)
n*(x, y) =
y 1 otherwise.

has dimension /7 x /7. The computational domain for both fibersis the same as before,
that is, {x:|x| <2}. The evanescent energy of each mode excited in a fiber is computed
by (10). We vary the wave number k and observe the change in the evanescent energy in
each fiber. Since the lower order modes are dominant, we concentrate on the fundamental
propagating mode (which corresponds to the solution to (12) for m=0). In Table 3, we
computed the percentage of energy existing outside of the core for each fiber as afunction
of k. We observe that as the wave number k decrease, more evanescent energy exists
outside of each fiber. Moreover, the evanescent energy of the square fiber is greater than
that of the circular fiber. This suggeststhat square fibers can be effectively used in molecule
detection and chemical imaging. For completeness, thetotal intensity | E,| of each fiber and
its cladding intensity in the computational domain is plotted for k? = 4.321575 in Fig. 2A
(for the circular fiber) and Fig. 2B (for the square fiber).

o S
i S N
XX 2NN

7
INSINZSS

FIG. 2A. Circular fiber: the intensity distribution of the fundamental mode (a) in the computational domain
Bgr, R=2, and its evanescent portion (b) (not to scale) in Bg\ 2, where Q2 is the fiber core.
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FIG. 2B. Square fiber: the intensity distribution of the fundamental mode (&) in the computational domain
Br, R=2, and its evanescent portion (b) (not to scale) in B\ where Q isthe fiber core.

7. CONCLUSION

We have constructed atransparent boundary condition which reduces the computational
efforts of the eigenvalue Helmholtz equation defined in the infinite domain to an interior
problem defined in a bounded domain. The finite element method based on the variational
formulation of the reduced problem is shown to have no spurious solutions and the opti-
mal convergence results are obtained. The accuracy of the method has been demonstrated
through comparisons to the avail able exact eigenvalues. Furthermore, the numerical exper-
iments indicate that propagating evanescent energy in a plastic squre fiber is sufficiently
strong to be useful in imaging applications.
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